Generalized Characters of the Symmetric Group
نویسنده
چکیده
Normalized irreducible characters of the symmetric group S(n) can be understood as zonal spherical functions of the Gelfand pair (S(n)×S(n),diag S(n)). They form an orthogonal basis in the space of the functions on the group S(n) invariant with respect to conjugations by S(n). In this paper we consider a different Gelfand pair connected with the symmetric group, that is an “unbalanced” Gelfand pair (S(n) × S(n − 1), diagS(n − 1)). Zonal spherical functions of this Gelfand pair form an orthogonal basis in a larger space of functions on S(n), namely in the space of functions invariant with respect to conjugations by S(n − 1). We refer to these zonal spherical functions as normalized generalized characters of S(n). The main discovery of the present paper is that these generalized characters can be computed on the same level as the irreducible characters of the symmetric group. The paper gives a Murnaghan-Nakayama type rule, a Frobenius type formula, and an analogue of the determinantal formula for the generalized characters of S(n).
منابع مشابه
Symmetry classes of polynomials associated with the dihedral group
In this paper, we obtain the dimensions of symmetry classes of polynomials associated with the irreducible characters of the dihedral group as a subgroup of the full symmetric group. Then we discuss the existence of o-basis of these classes.
متن کاملDefect of characters of the symmetric group
Following the work of B. Külshammer, J. B. Olsson and G. R. Robinson on generalized blocks of the symmetric groups, we give a definition for the l-defect of characters of the symmetric group Sn, where l > 1 is an arbitrary integer. We prove that the l-defect is given by an analogue of the hook-length formula, and use it to prove, when n < l, an l-version of the McKay Conjecture in Sn.
متن کاملOn Symmetric Extended Generalized Logistic Distribution
In this paper, we consider a form of the generalized logistic distribution named symmetric extended generalized logistic distribution or extended type III generalized logistic distribution. The distribution is derived by compounding a two-parameter generalized Gumbel distribution with a two-parameter generalized gamma distribution. The cumulative distribution and some properties of this distrib...
متن کاملGeneralized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کامل